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A B S T R A C T

Energy flexibility from buildings is a key enabler of the flexible energy system required to integrate intermittent 
renewable energy sources. This systematic literature review investigates the factors influencing energy flexibility 
from the built environment and the uncertainties associated with its exploitation. It employed a structured 
methodology using over 140 relevant studies to identify and categorise the sources of uncertainty into aleatory 
and epistemic sources.

Stochastic elements, like weather and occupant behaviour, introduce aleatory uncertainty which challenges 
prediction capabilities. This can be managed through probabilistic modelling and adaptive controls. Epistemic 
uncertainty, driven by incomplete data, lack of knowledge and modelling assumptions, remains a barrier to 
accurate forecasting. The identified dominant factors were determined iteratively and comprise occupant 
behaviour, building characteristics, energy systems and controls, and externalities.

A framework was proposed in which uncertainties arising from the dominant factors can be categorised and 
mitigated for different stakeholders. Uncertainty can propagate through systems and controls, causing poor 
realisation of building energy flexibility. This can be managed via implementation of robust optimisation 
methods and real-time (15 min or shorter) data integration. Externalities such as market volatility and complex 
policy frameworks also pose risks to the economic viability of flexibility services. This review emphasises the 
need for improved data collection and advanced control as methods to mitigate uncertainty in flexibility 
quantification. Additionally, it highlights the critical role of diversity in mitigating uncertainty, and the 
importance of increasing building populations (i.e., 100 or more domestic dwellings) to enable scalable flexibility 
solutions.

☆ This article is part of a special issue entitled: ‘Decarbonising Built Env’ published in Energy & Buildings.
* Corresponding author.

E-mail addresses: G.Dawes@lboro.ac.uk (G. Dawes), tugcin.kirant_mitic@uni-wuppertal.de (T. Kirant-Mitić), zjiang19@syr.edu (Z. Jiang), jledreau@univ-lr.fr
(J. Le Dréau), hanmin.cai@empa.ch (H. Cai), s212631@student.dtu.dk (J. Cui), J.Townsend@lboro.ac.uk (J. Townsend), adamantios.bampoulas@ucd.ie
(A. Bampoulas), liron@dtu.dk (R. Li), rm.lopes@fct.unl.pt (R.A. Lopes), bidong@syr.edu (B. Dong). 

Contents lists available at ScienceDirect

Energy & Buildings

journal homepage: www.elsevier.com/locate/enb

https://doi.org/10.1016/j.enbuild.2025.116157
Received 28 March 2025; Received in revised form 30 June 2025; Accepted 14 July 2025  

Energy & Buildings 346 (2025) 116157 

Available online 15 July 2025 
0378-7788/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0002-1052-8592
https://orcid.org/0000-0002-1052-8592
https://orcid.org/0000-0002-1702-8822
https://orcid.org/0000-0002-1702-8822
https://orcid.org/0009-0002-7824-6062
https://orcid.org/0009-0002-7824-6062
https://orcid.org/0000-0002-6804-4160
https://orcid.org/0000-0002-6804-4160
https://orcid.org/0000-0002-1020-1071
https://orcid.org/0000-0002-1020-1071
https://orcid.org/0000-0002-3654-8014
https://orcid.org/0000-0002-3654-8014
https://orcid.org/0000-0002-6953-1403
https://orcid.org/0000-0002-6953-1403
mailto:G.Dawes@lboro.ac.uk
mailto:tugcin.kirant_mitic@uni-wuppertal.de
mailto:zjiang19@syr.edu
mailto:jledreau@univ-lr.fr
mailto:hanmin.cai@empa.ch
mailto:s212631@student.dtu.dk
mailto:J.Townsend@lboro.ac.uk
mailto:adamantios.bampoulas@ucd.ie
mailto:liron@dtu.dk
mailto:rm.lopes@fct.unl.pt
mailto:bidong@syr.edu
www.sciencedirect.com/science/journal/03787788
https://www.elsevier.com/locate/enb
https://doi.org/10.1016/j.enbuild.2025.116157
https://doi.org/10.1016/j.enbuild.2025.116157
http://creativecommons.org/licenses/by/4.0/


1. Introduction

1.1. Background

The pursuit of decarbonisation and achieving net-zero targets 
through widespread renewable energy integration into the energy mix 
has led to a growing interest in the use of building energy flexibility to 
balance supply and demand mismatches which pose risks to grid oper-
ability and congestion. As defined by [1], a building’s energy flexibility 
is “its ability to manage its demand and generation according to local climate 
conditions, user needs and grid requirements”. Considering energy flexi-
bility during the design, development or operation of a building’s life-
time provides many benefits, including enabling occupants to contribute 
to national net-zero targets [2], providing grid management services by 
reducing the need for expensive and invasive network upgrades [3] and 
contributing towards peak demand management [4].

Building energy flexibility involves leveraging a variety of technol-
ogies and strategies to achieve single, or multiple objectives. To 
appropriately mitigate risks and maximise energy flexibility potential it 
is necessary to consider what the dominant factors affecting energy 
flexibility are. The dominant factors of energy flexibility in this research 
were determined iteratively and qualitatively defined as “the variables 
or conditions that most significantly influence a building’s ability to 
provide building energy flexibility”. The factors can be classified by the 
thermophysical characteristics of the building’s materials and structure 
(building characteristics), utilisation and control of building technolo-
gies and services (energy systems & controls), the behaviour of occu-
pants within the building and with the services (occupant behaviour), 
and the impacts of externalities such as weather, building-grid in-
teractions and energy markets. Understanding and addressing these 
factors is essential for designing effective flexibility strategies and 
realising the full potential of energy flexibility in the built environment. 
However, despite the growing interest in energy flexibility, there are 
significant uncertainties related to these factors that can hinder the 
exploitable energy flexibility potential of a building – these uncertainties 
need to be explored.

1.2. Categorising uncertainty for building energy flexibility

Providing a qualitative definition of uncertainty for energy flexibility 
at multi-building scales, including connecting infrastructure (i.e., 
power, heating, cooling and gas networks) is important. Prior research 
considered four sources of uncertainty for building stock energy 
modelling (Aleatory, Epistemic, heterogeneity and model uncertainty) 
[5], which, after further development by [6], does not clarify uncer-
tainty sources for energy flexibility in the real world. A more holistic and 

widely adopted approach by [7], notes that most uncertainties are cat-
egorised as epistemic if the uncertainty can be reduced by gathering 
more data or refining models, or as aleatory if they cannot be reduced. 
Therefore, this paper proposes two broad descriptions of uncertainty 
sources for building energy flexibility – Fig. 1 illustrates the in-
terrelationships between the uncertainty categories: 

1. Aleatory uncertainty – (or stochastic uncertainty), stems from 
inherent variability and randomness in a system or process. For 
building energy flexibility, aleatory uncertainty is related to unpre-
dictable variations in occupant behaviour, and externalities such as 
weather conditions and energy prices. These fluctuations are 
intrinsic to the system and cannot be eliminated, only managed. For 
instance, daily changes in temperature, sudden shifts in occupancy, 
and market-driven energy price volatility represent aleatory uncer-
tainty. While these uncertainties cannot be reduced through addi-
tional information, methods that incorporate adaptive control 
systems or probabilistic modelling can help manage and accommo-
date the inherent variability.

2. Epistemic uncertainty – also known as systematic uncertainty, arises 
from a lack of knowledge about a system or process. In the context of 
building energy flexibility, epistemic uncertainty can be attributed to 
incomplete or imprecise information about building characteristics, 
occupant behaviour, and system performance. For example, lack of 
knowledge for the thermal properties of building materials, lack of 
detail in energy consumption data, or limited time series data on 
occupant behaviour contribute to epistemic uncertainty. This type of 
uncertainty can potentially be reduced through improved data 
collection, more accurate modelling, and a better understanding of 
the system.

There are additional sources of uncertainty which may be relevant 
for specific use cases. However, these can be categorised into epistemic 
sources due to the origins based on lack of knowledge or understanding: 

• Heterogeneity – uncertainty resultant from the variation between 
parameters which have been assigned to the same group/classifica-
tion/population. For example, buildings assigned to a particular 
archetype will not exhibit the exact same characteristics.

• Model uncertainty – uncertainty about how to model the true pro-
cesses of systems due to lack of knowledge, simplification, assump-
tion or omission. An example includes different methods of 
modelling heat and mass transfer in building energy simulations.

1.3. Previous reviews

To date, most studies have focused on the single-building scale. 
However, the real-world operation and market execution of energy 
flexibility programmes are likely to occur at multi-building scales −
requiring aggregation of multiple buildings to provide energy network 
solutions at local (<1Megawatt (MW) [8]), distribution (1–100 Mega-
watt [8]) and transmission (>100 Megawatt) scales to provide a 
meaningful service [8]. Understanding how dominant factors and their 
uncertainties can affect the exploitable energy flexibility of buildings is 
crucial for optimising energy management strategies in building clusters 
to deliver energy flexibility. Existing reviews in the field explore several 
aspects pertaining to the energy flexibility of buildings and are sum-
marised in Table 1.

Further, [19] highlighted the complexities associated with 
competing interests amongst stakeholder groups which makes it arduous 
to devise suitable incentives for participation in flexibility services xx. 
Such stakeholders include homeowners, aggregators, network opera-
tors, and energy providers. This review refines this list into four stake-
holder groups (non-exhaustive), each broadly representing a distinct 
part of the energy system. 

Nomenclature

B2DN Building-to-Distribution Network
BEMS Building Energy Management System
BGI Building Grid Interaction
DER Distributed Energy Resources
EV Electrical Vehicle
ESCO Energy Service Company
GHG Greenhouse-gas
HVAC Heating, Ventilation and Air-conditioning
MPC Model Predictive Control
MW Megawatt
PV Solar Photovoltaic
RBC Rule-Based Control
SSSS Sub-keyword Synonym Subtopics Searching
TDR Thermal Demand Response
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1. Occupants (including both domestic and non-domestic energy con-
sumers, and billpayers) who wish to reduce energy bills or improve 
operating carbon emissions;

2. Service providers (including energy companies and aggregators) 
who aim to enable small-scale demand-side flexibility and support 
large-scale system operations;

3. System operators (including local or larger grid/system operators 
and power generators) who seek grid stability and resilience;

A further group of decision makers – (including local or national 
governments, policy makers and regulators) who wish to achieve fair, 

balanced and transparent operations for other stakeholders – was also 
identified. To keep the focus of this review on the operational side of 
delivering energy flexibility this group is not mentioned in as much 
detail as other groups.

1.4. Research aims & objectives

Existing literature has shown this is an established topic, but current 
research lacks the necessary links between dominant factors, their un-
certainties and mitigation for different stakeholders. The primary aim 
was, therefore, to identify the dominant factors and uncertainties of 

Fig. 1. A hierarchical diagram illustrating the relationship between four sources of uncertainty for building energy flexibility.

Table 1 
A summary table of existing review articles detailing their considerations of the focal points of this paper and limitations which this current research addresses.

Reference Dominant Factors Identified Stakeholder Risk and/or Mitigation Sources of Uncertainty or 
Categorisation

Review Limitations

C. Silva et al. (2022) [9] Consumer participation and 
awareness, signal 
appropriateness, information 
sharing

System reliability, consumer discomfort – 
context aware signals can mitigate these

Consumer response levels, 
appliance interdependence, 
uninformed consumers, 
stochastic load profiles

Limited generalisability, assumed 
“perfect agents” not realistic for 
contextual signals

A. Kathirgamanathan 
et al. (2021) [10]

Data-driven MPC, building 
physics and dynamics, 
occupant behaviours, weather 
conditions

Inaccurate controls from poor data inputs 
and consumer discomfort – mitigated by 
high quality data and adaptive controls

Epistemic model inaccuracies, 
aleatory weather variability and 
occupant behaviour

Limited discussion of scalability 
and no consideration for non- 
data-driven methods

J. Le Dréau et al. (2023) 
[11]

Energy system integration, 
and occupant diversity/ 
variability

Risks of coordination failure, system 
inefficiency, low occupant participation. 
Mitigation via standardised planning, real- 
time monitoring, and stakeholder 
collaboration

Epistemic data gaps in planning 
stages

Limited practical implementation 
details and limited focus for 
stakeholders

H. Li et al. (2023) [12] Building characteristics and 
data integration/quality

Misalignment of performance indicators 
and data inaccessibility across stakeholders

Building performance 
variability, data incompleteness, 
poor responses in low-data 
scenarios

Limited focus on operational 
aspects of energy flexibility

J. Langevin et al. (2024) 
[13]

Customer enrolment, 
participation and behaviours

Low uptake/engagement with services and 
poor programme design, mitigated by 
targeted incentives, energy education and 
user-friendly programme design

Participation unpredictability Behavioural focus may overlook 
technical barriers and other 
factors 

H. Li et al. (2021) [14] Residential building 
characteristics, energy system 
controls and occupant 
behaviour

Disparity between design and realised 
flexibility potentials, and lack of occupant 
engagement

Errors in measurement and 
aleatory behavioural variability

Residential focus limits broader 
applicability and method diversity 
may confuse practical use

J. R. Vázquez-Canteli 
and Z. Nagy (2019) 
[15]

DR controls and algorithms, 
modelling techniques

Algorithm failure leading to sub-optimal 
realised flexibility responses, could be 
mitigated by reinforcement learning and 
real-time data integration

Weather/environmental 
variability

RL complexity limits adoption and 
dating of the review may miss 
most recent advances in 
computation

X. Jin et al. (2020) [16] Multi-scale flexibility markets 
and models, stakeholder 
coordination

Market inefficiencies and low participation 
from occupants, mitigated by more 
transparent pricing

Aleatory market dynamics and 
epistemic modelling 
assumptions

The theoretical approach lacks 
practical validation. A limited 
consideration of consumers and 
the built environment

M. L. Lu et al. (2024) 
[17]

Building characteristics and 
building energy systems

System underperformance, mitigated by 
uncertainty-aware design

Inter-system performance 
responding to variable weather 
conditions

No strong consideration of 
building characteristics or control 
algorithms

C. Rae et al. (2020) [18] Local-scale energy systems Failure to achieve scalability and poor 
standardisation of technologies

Aleatory demand variability Broad scope of the review lacks 
specificity, alongside a shallow 
depth of solutions proposed to 
problems
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energy flexibility in the built environment and subsequently analyse 
their impacts on varying stakeholder groups. The purpose of this paper is 
to provide a detailed review of the dominant factors but also highlight 
how their uncertainties can be categorised and mitigated by stakeholder 
groups to help achieve energy flexibility at multi-building scales. To do 
this several research objectives were proposed: 

1. Assess the current state-of-the-art research regarding the dominant 
factors of exploitable energy flexibility.

2. Identify and categorise sources of uncertainty regarding energy 
flexibility in the built environment, specifically noting the challenges 
or barriers they create.

3. Provide recommendations for future research and stakeholders, 
including suggestions for improving uncertainty management for 
energy flexibility in the built environment (i.e., buildings are their 
connected energy networks) and addressing the challenges identified 
in the literature.

In this section an overview of the scope of the research is provided, 
identifying the issues created due to uncertainty and gaps in knowledge 
surrounding the dominant factors of energy flexibility in the built 
environment. Section 2 discusses the novel systematic review 

methodology employed to explore the state-of-the-art. Section 3 pre-
sents results of the review analysis by categorising sources of uncertainty 
for each dominant factor. In Section 4, a discussion of the dominant 
factors and sources of uncertainty is provided alongside proposal of a 
framework to categorise and manage uncertainties for different stake-
holders. Section 5 then concludes with a cross-examination between the 
dominant factors, uncertainties and how they might hinder exploiting 
energy flexibility.

2. Review methodology and metadata analysis

2.1. Literature review methodology

The dominant factors explored in this research were derived from 
existing review literature, as per Table 1, which were either mentioned 
factors impacting building energy flexibility directly or its uncertainty. 
This study expands these findings by categorising findings across the 
four dominant factors: occupant behaviour (Section 3.1), building 
characteristics (Section 3.2), building energy systems and controls 
(Section 3.3) and, externalities and interactions (Section 3.4).

The Sub-keyword Synonym Subtopics Searching (SSSS) Python 
package was used to conduct a comprehensive literature review that 

Fig. 2. A flow chart of the review process conducted in this systematic literature review, including input parameters of SSSS for the literature search.
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captures the most relevant and important articles. The methodology 
used follows that of [20]. In this study, the search list consists of two sub- 
keywords listed in Fig. 2. The first sub-keyword narrows the paper to 
focus on energy flexibility, whilst the second sub-keyword defines the 
specific topic; 45 keyword search combinations were used in this paper. 
Inclusion/exclusion criteria were considered to improve the quality of 
the papers considered. Firstly, a citation threshold of five was used, then 
papers were ranked by citation number of which the 10 most cited pa-
pers were selected. The use of the SSSS methodology yielded 472 unique 
papers over two searches which, after a first screening by checking titles 
to ensure adequate relevance, yielded 294 papers. Following a second 
screening via abstract review, 121 papers were selected for a detailed 
review, of which 92 were referenced in this paper. Conference papers 
that did not undergo a peer-review process were omitted – book chapters 
were also omitted from the analysis as they do not provide original 
research.

2.2. Metadata analysis

The reviewed literature metadata is summarised in Fig. 3, illustrating 
the case-study location, year of study, journal publication and flexibility 
objective (where possible). The metadata suggest that the geographic 
location of case studies is heavily biased towards nations where energy 
flexibility is already noted as a key integrator of future energy system 
operations.

3. Review results

3.1. Occupant behaviour

This section focuses on 40 papers identified to have relevance to the 
occupant stakeholder group. The date range of the papers was between 

2010 and 2025, which helps base these findings in more modern energy 
use patterns and behaviours. The research in this area was mainly mixed 
quantitative–qualitative or quantitative, with many articles based on 
modelling of flexible assets and occupants. In many of the reviewed 
studies, occupant modelling was treated as a secondary analysis, rather 
than the central focus. This trend likely reflects the methodological 
challenges and data limitations associated with capturing occupant 
behaviour and the interactions with energy systems in a detailed and 
realistic manner. In this paper, we define occupant behaviour in three 
broad dimensions which aligns with other studies in the field, similarly 
to [21]: 

• Spatial occupancy: identification of where occupants/consumers are 
in (or out of) the building;

• Temporal occupancy: understanding when occupants are in the 
building and the types of activities and when equipment is used, and;

• Behavioural occupancy: exploring how occupants will interact with 
the building and energy system

Addressing uncertainties from occupant behaviour requires both 
probabilistic approaches to handle variability (aleatory) and improved 
data collection, modelling, and understanding of human behaviour 
(epistemic). A summary of the uncertainty categorisation for occupant 
behaviour can be found in Table 2.

Integrating subsystems such as EVs, heat pumps, and self-generation 
complicates predicting occupant interactions, making real-time energy 
flexibility management challenging. This is especially the case for sce-
narios when these systems are not controlled by the same entity. As 
noted in [22], advanced tracking and predictive technologies are 
required to adjust energy usage dynamically – such as their use of a 
robust framework to handle uncertainties due to intermittent renewable 
energy sources and occupant behaviour in day-ahead energy scheduling 

Fig. 3. A series of figures illustrating (clockwise from top left) the flexibility objectives employed by the reviewed studies, the geographical location of studies 
considering modelled or real-world case-studies, the percentage of articles from varying journals and the number of publications each year by journal source.
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for a residential microgrid. However, modelling human-technology in-
teractions incurs high development and computational costs [32]. This 
unpredictability in occupant-behaviour creates challenges for develop-
ment of building control strategies, especially for systems that rely on 
accurate predictions such as MPC. Although MPCs may be trained using 
real-world data, it is often difficult to initially acquire such data [33] – 
this is discussed in more detail in Section 3.3.

Behavioural heterogeneity further complicates energy flexibility 
potential as variations in behaviour due to building type, socio- 
economic factors (incomes, ownership, lifestyle), technological (type 
of systems, perceived interaction), and regulatory contexts influence 
occupant participation [20,21,22]. Occupants’ awareness of their en-
ergy use is also a significant factor, but many remain unaware of how 
their routines impact flexibility, limiting engagement with such services 
[31,34] − without acceptance of occupants and energy service com-
panies (ESCOs), achieving scalable energy flexibility is limited. [27] 
identifies occupant behaviour as a critical and highly uncertain driver of 
residential flexibility, where comfort constraints and user adaptability 
often limit the real-world impact of advanced control strategies. This 
extends to uncertainty in occupant engagement and service uptake 
which can pose issues across the value chain, causing risks for aggre-
gators due to lack of participation, and for network operators due to lack 
of sufficient balancing reserve. Lack of awareness or understanding, can 
further inhibit engagement with energy flexibility technologies [30], as 
occupants (domestic or non-domestic) may be reluctant to invest in 
assets without clear financial incentives or guaranteed returns [9,13].

3.2. Building characteristics

This section focuses on 10 papers, published between 2014 and 
2023, which considered the importance of building characteristics to 
deliver energy flexibility. These nine journal articles and one conference 
paper, all originate from Europe; they focus primarily on theoretical 
modelling and simulation studies. A summary of the uncertainty cate-
gorisation for building characteristics can be found in Table 3.

As per Table 3, the uncertainty associated with building character-
istics is mainly categorised into epistemic sources. The literature pre-
sents several challenges with the existence and quantification of 

uncertainty which can be categorised, by lack of detail (i.e., mismatch 
between theory and real-world – such as the performance gap of 
buildings), lack of understanding fundamental thermophysical in-
teractions (i.e., underlying building physics of the building materials 
and components) and other epistemic uncertainties (including hetero-
geneity due to simplifications). It is important to note that a theoretical 
“flexibility potential” could be considered using well-established 
building and product standards as a reference case. In practice the 
real-world performance of building materials and energy systems pro-
duces a significant performance gap [41] – producing further un-
certainties for measurements [42].

Predicting the ensuing post-retrofit impacts on changing fabric 
thermal performance remains a significant challenge due to the diverse 
range of outcomes buildings can have [43]. Many buildings, particularly 
older ones, lack the infrastructure to support energy flexibility solutions, 
and retrofitting to improve insulation or thermal inertia can be both 
complex and costly [44]. Epistemic uncertainties, at multi-building 
scales arise due to lack of detailed knowledge of building’s thermal 
inertia and, by extension, its thermal demand response (TDR) capacity. 
[45,46]. For example, variability in thermal mass across buildings in-
troduces both aleatory and epistemic uncertainties, as demonstrated by 
[47], where retrofitting impacts vary by building type. Building char-
acteristics such as thermal inertia can also have an impact on how 
occupant behaviour influences the energy flexibility, e.g., as discussed in 
Section 3.1, occupant-driven thermostat adjustments can cause unpre-
dictable load profiles. Buildings with high thermal mass minimises the 
uncertainty of thermostat adjustments from occupants as sharp tem-
perature changes are avoided. As [38] highlights, incomplete 

Table 2 
A table of findings from the review which categorises the main sources of un-
certainty for occupant behaviour between aleatory and epistemic uncertainty 
types.

Aleatory Uncertainty 
Stems from the inherent 
randomness of human 
behaviour.

Epistemic Uncertainty 
Arises from incomplete 
knowledge or gaps in data 
and models.

Reference

Variability in appliance use due to 
differing schedules and 
preferences introduces 
stochastic changes in energy 
demand.

Limited or incomplete data on 
how occupants use energy (e. 
g., spatial, temporal, and 
behavioural patterns).

[22,23,24]

Intermittent and periodic 
behaviours (e.g., daily routines, 
turning devices on/off) cause 
fluctuations in consumption.

Use of generalised models or 
assumptions that fail to capture 
the complexity of human 
activities.

[23,25–27]

Socio-technical factors, such as 
external influences and personal 
preferences (e.g., heating, 
cooling), add unpredictability.

Lack of understanding of 
decision-making drivers, such 
as attitudes toward energy 
conservation and smart tech.

[24,26,28]

Externalities like weather or 
dynamic pricing impact 
behaviour unpredictably.

Limited granularity and quality 
of data can hinder accurate 
modelling and prediction of 
energy demand.

[29,30]

Engagement with energy 
flexibility services (e.g., time-of- 
use pricing) varies; some 
respond to signals, others do 
not.

Simplifying behaviour into 
fixed schedules fails to reflect 
the dynamic and stochastic 
nature of occupant actions.

[28–31]

Table 3 
A table of findings from the review which categorises the main sources of un-
certainty for building characteristics between aleatory and epistemic uncer-
tainty types.

Aleatory Uncertainty 
Stems from the time-varying 
thermophysical properties of 
building materials and 
surfaces.

Epistemic Uncertainty 
Arises from incomplete 
knowledge or gaps in 
understanding building 
materials, structures and 
facades.

Reference

Inherent variability in 
interactions between weather 
patterns and built form 
affecting building thermal 
performance, including solar 
gains.

Incomplete knowledge about 
building characteristics, such 
as material variability, 
insulation levels, and thermal 
capacity.

[28,29,33]

​ Simplifications in thermal 
models that fail to capture real- 
world conditions.

[35–37]

Dynamic building conditions, 
including fluctuations in 
heating or cooling 
performance due to 
externalities like weather and 
solar radiation.

Use of averaged building 
archetypes or limited 
monitoring that overlook 
heterogeneity in building types 
and thermal performance.

[37]

Sensitivity of thermal energy 
storage potential due to 
fluctuations in internal and 
external ambient conditions.

Poor material-level 
understanding of interactions 
between thermal mass, 
insulation, and other design 
parameters (e.g., window size, 
thermal environments).

[31,33,38,39]

​ Assumptions about space 
conditions (e.g., treating 
internal spaces as empty) that 
fail to reflect actual building 
usage.

[32,38]

​ Lack of quantitative 
assessments in studies, with 
most providing qualitative 
evaluations of building energy 
flexibility due to 
thermophysical interactions.

[38,40]
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understanding of these interactions complicates accurate predictions of 
energy flexibility potential across different building types and thermal 
performance capacities.

3.3. Building energy systems & controls

This section focuses on 61 papers published between 2011 and 2024 
that investigate how building energy systems contribute to building 
energy flexibility, and the importance and intricacy of the controls used 
to manage these systems. Of the 61 papers, 13 were review papers, 11 
were conference papers and 35 were journal articles.

Approaches such as stochastic programming, Monte Carlo simula-
tions, and robust optimisation are frequently discussed to improve en-
ergy system reliability and operational efficiency. Three main categories 
describe a building’s energy flexibility potential from its systems, 
comprising generation (i.e., using solar PV, micro-wind or fuel cells to 
reduce demand strain on, or support supply of energy to local grids), 
storage (i.e., using electrical batteries or thermal storage to shift energy 
demand away from peak periods), and conversion (i.e., using heat 
pumps to convert electrical energy to thermal energy as a means of 
reducing demand for other energy vectors).[48].

Several of the papers consider the use of intermediate scale systems 
which connect multiple buildings – shared heat sources or distribution 
[48,49,50], for example − and has been recognised as a promising 
pathway to promote energy efficiency [51] through more efficient use of 
resources, alongside enhancing grid resilience [52] by improving 
building energy flexibility [53]. By leveraging local generation and 
storage systems significant peak shifting, load modulation can be ach-
ieved at the multi-building scale [48,53] also assess how rising EV 
penetration and capacity-limit settings influence flexibility benefits by 
embedding load-forecast uncertainty into scenario analyses. A summary 
of the uncertainty categorisation for building energy systems and con-
trols can be found in Table 4.

Building energy flexibility assessment is hindered by modelling 
limitations [38], prediction uncertainty [59], control infrastructure 
[61], and design complexity [55]. Building digitalisation has driven 
increased use of optimisation-based control, improving upon traditional 
rule-based controls (RBC) [66], towards Model Predictive Controls 
(MPC). Robust MPCs have a higher capability to deal with uncertainties 
because they optimise for the worst-case outcome within a defined un-
certainty, set to handle uncertain parameters such as occupant behav-
iour, weather variability or other building-grid interaction (BGI) signals 
[67] (each of which are discussed further in Section 3.4). Incorporating 
feedback processes, has been shown to enhance experimental flexibility 
[61,68]. Practical deployment of MPC remains constrained by compu-
tational efficiency issues [60,58], while simplified models often neglect 
critical constraints such as power limits and ramp rates, reducing their 
effectiveness [69]. Scaling and aggregating energy flexibility requires 
significant coordination of assets [49], with standardisation and inter-
operability being essential to achieve seamless energy system coordi-
nation. The building-to-distribution-network (B2DN) framework shows 
promise in overcoming fragmentation by reducing heterogeneity at 
scale through inter-system connectivity [70].

By improving data collection and sensing technologies it is possible 
to reduce epistemic uncertainty by incorporating measured data from 
in-use building operations to enable prediction refinements [71,72]. 
Mentioned earlier, the use of real-world to train an MPC is one way of 
reducing uncertainty in predictions, but current technologies for 
acquiring and processing such data are not established enough [73]. As 
an uncertainty modelling approach, e.g., polyhedral and box methods to 
handle variability in RES output, EV charging behaviour, and load de-
mand in [74], a two-stage stochastic probability optimization method 
that incorporates operational uncertainties in [75] and an interval 
optimization theory with a soft actor-critic deep reinforcement learning 
algorithm was introduced in [76] to address uncertainties from renew-
able generation and demand response.

As discussed in Section 3.2, the co-dependency and propagation of 
uncertainties between occupant behaviour and control sequences at 
scale complicates effective evaluation of energy flexibility potentials 
when actuating/delivering a flexibility action. This uncertainty at the 
control stage is also affected by intermittent renewable energy sources 
which introduces risks to grid stability, necessitating robust flexibility 
control strategies [56,59]. High initial costs, as noted in Section 3.1, can 
introduce epistemic uncertainty via reduced consumer adoption rates, 
which necessitates greater data collection to make informed decisions 

Table 4 
A table of findings from the review which categorises the main sources of un-
certainty for building energy systems and controls between aleatory and 
epistemic uncertainty types.

Aleatory Uncertainty 
Stems, primarily, from the 
stochastic externalities and 
occupant preferences that 
set boundary conditions 
which propagate through 
control sequences and 
impact the control 
decisions made for the 
system.

Epistemic Uncertainty 
Arises from simplifications or 
lack of understanding of 
what systems are available, 
the control methods used and 
reliance on assumptions 
about system performance 
and communication 
reliability for inter-operation 
with other systems.

Reference

Propagation of stochastic 
uncertainties from 
externalities influencing 
energy system performance 
(e.g., weather, market 
prices and other boundary 
conditions).

Assumptions made during 
modelling and design stages, 
such as HVAC efficiency, 
predicted generation, and 
energy storage systems. i.e., 
discrepancies between the 
model and the actual building 
performance (performance 
gap).

[17,54–58]

Fluctuations and errors in 
forecasts of renewable 
energy generation, 
measurement noise, and 
occupant-driven dynamic 
load conditions causing 
grid instability and load 
imbalances at a multi- 
building scale.

Inaccurate and lack of 
empirical data for calibrating 
control models, leading to 
reliance on simplified 
assumptions (i.e., perfect 
system response or bounded 
uncertainties). Inaccuracies in 
data measurements (e.g., 
voltage, temperature) and 
converter control discrepancies 
affecting power injection 
accuracy.

[51,56–61] 

Variability in HVAC 
operating patterns, such as 
defrosting cycles in air- 
source heat pumps, and 
internal algorithms in 
system controls. This causes 
random disturbances in 
system dynamics and 
demand fluctuations.

Simplifications in models by 
ignoring penalties like 
efficiency losses during partial 
load operations or defrosting 
cycles. This necessitates 
dependence on robust control 
methods to account for worst- 
case scenarios, which may limit 
the granularity of captured 
uncertainties.

[4,45,59,62,63]

Interaction of renewable 
generation and stochastic 
occupant-driven building 
loads affecting energy 
storage systems.

Reliance on unvalidated 
models and assumptions about 
perfect communication systems 
or uniform HVAC 
responsiveness.

[32,62,63]

Long-term variability in 
renewable energy 
generation and residential 
loads (e.g., annual changes 
in system inputs).

Stochastic models assuming 
fixed distributions or 
probabilities, which might not 
adapt well to dynamic system 
characteristics over time.

[58,59,61]

​ Model simplifications in energy 
storage integration, such as AC 
versus DC distribution and 
uncertain design parameters (e. 
g., thermal storage capacity).

[48,64,65]

​ Simplified probabilistic models 
and scenario-based 
optimisation approaches that 
may not fully represent real- 
world variability.

[45,60,62]
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about the costs and benefits at scale [55,77].

3.4. Externalities and interactions

This literature discussing the role of externalities and grid in-
teractions comprises 34 papers published between 2011 and 2024, 
combining quantitative modelling and simulation studies, as well as 
qualitative review. This duality highlights the focus on the need to 
qualitatively explore concepts relating to these externalities but also 
quantify the effects of BGI through efficient data communication and 
sharing. This section differentiates itself from the others due to the 
discussion being focussed on non-building factors (i.e., political, eco-
nomic, technology uptake, social and societal aspects). A summary of 
the uncertainty categorisation for externalities can be found in Table 5.

The externalities impacting the effective use of BGI can be consid-
ered as economic barriers, regulatory and institutional barriers, or 
system-specific barriers.

Economic barriers are mostly due to the inconsistency and unreli-
ability of market signal data [32]. This uncertainty further complicates 
investment decisions in renewable systems due to unpredictability of 
energy prices in day-ahead and balancing markets [34,60,80]. Varia-
tions in customer responses to demand response programs [81] make it 
challenging for aggregators to optimise energy arbitrage and delivery 
strategies. The potential lack of consumer engagement with price-based 
BGI signals and minimal understanding of electricity markets exacer-
bates these challenges, further hindering effective demand response and 
energy flexibility services. BGI signals, defined as “a dynamic signal that 
prompts adjustments in a building’s systems or processes to align with 
operational goals and external factors such as grid service re-
quirements”, can be used to trigger energy flexibility at scale. The 
complexity of producing communicable BGI signals causes challenges 
due to the mismatches between desired and delivered outcomes from 
uncertainty in the BGI signal.

Current regulatory and institutional barriers create misalignment 
between market pricing structures and the potential of energy flexibility 
services due to poor incentives causing poor participation from 

consumers in demand response programs [79]. [58] highlights that 
despite technical feasibility, the realisation of flexibility at scale is often 
hindered by regulatory fragmentation, unclear market incentives, and 
organisational complexity. This is compounded by the lack of Flexibility 
Capital, to enable consumers to participate in these services – discussed 
further in Section 4.3.1. Generating and acquiring high-quality input 
data for building-level systems requires substantial time and financial 
investment, adding further complexity to improving the regulatory and 
institutional landscape [31].

System-specific barriers ensue from coordinating energy flexibility 
across multiple buildings, assets and networks. Real-time coordination 
over 15 min or shorter periods necessitates seamless interactions be-
tween BEMS, distributed energy resources (DERs), and the grid − pro-
cesses often disrupted by communication delays and forecasting errors 
[82,80,81]. The absence of infrastructure to support the aggregation of 
flexibility across multiple buildings (i.e., smart metering and commu-
nication devices that are interoperable with BEMS) create additional 
challenges and inhibits the scalability of energy flexibility solutions 
[68]. Furthermore, the lack of standardised protocols for data sharing 
between buildings and grid operators introduces inefficiencies in real- 
time energy dispatch and control operations [78].

The first part of this research, completed in this section, aimed to 
identifying dominant factors and their uncertainties. The next section 
addresses the second part of the aim by discussing uncertainty man-
agement and mitigation strategies for the four stakeholder groups − as 
categorised in Section 1.2- comprising occupant, service providers, 
system operators and decision makers.

4. Uncertainty management and mitigation for stakeholders

4.1. Uncertainty propagation and factor interactions

The review highlights that uncertainty arises early on when input 
parameters are first introduced to a model, or when a baseline assess-
ment is needed for real world implementation. For example, inaccura-
cies in weather forecasts not only introduce aleatory uncertainty but also 
produce epistemic uncertainties from MPC-controlled systems [83]. The 
failure to capture the complexity of real-world dynamics and perfor-
mance contributes to the flexibility gap [42].

Feedback mechanisms in building controls can propagate errors and 
uncertainty when initial assumptions or data inputs are flawed. This can 
happen, for example, when an MPC attempts to mitigate uncertainty by 
using probabilistic scenarios which, unknowingly, have poorly charac-
terised uncertainty values. This leads to compounding of uncertainty as 
subsequent decisions are made [61,84]. The interactions between fac-
tors can be considered as a multi-layer feedback loop, as per Fig. 4. Here, 
interactions between the layers are crucial in identifying the sources of 
uncertainty and their propagation to understand how they can be 
mitigated.

4.2. Aggregation effects

Aggregation effects are central to realising energy flexibility at scale, 
particularly for grid-level applications where individual buildings 
contribute collectively to provide energy flexibility services [85]. The 
levels of diversity achieved at multi-building scales, by levelling differ-
ences across building characteristics, occupant behaviours, and energy 
systems, plays an important role in reducing uncertainty of energy 
flexibility at multi-building scales [85]. This review emphasises that as 
building populations increase, so does the level of diversity – which can 
help mitigate aleatory uncertainty due to the levelling effects on indi-
vidual buildings’ energy consumption variability – a similar finding to 
work by [86]. While differences in levels and distribution of thermal 
mass, insulation, and energy system configurations across building 
portfolios can enhances resilience, it also introduces epistemic uncer-
tainty due to simplified assumptions made during aggregation 

Table 5 
A table of findings from the review which categorises the main sources of un-
certainty for externalities between aleatory and epistemic uncertainty types.

Aleatory Uncertainty 
The inherent randomness 
due to seemingly 
uncontrollable factors like 
weather patterns, energy 
policy, and variations 
impacting stakeholders at 
different scales.

Epistemic Uncertainty 
Arises from lack of 
understanding and limited 
data on behavioural and 
socio-technical non-building 
factors for stakeholders at 
the single and multi-building 
scales.

Reference

Impacts and behaviours due to 
current and future regulation 
and policy changes.

Economic barriers for multiple 
stakeholders from inconsistent 
and unreliable data sources

[18,78,79]

Variability in user participation 
in demand response 
programs and response to 
price incentives.

Errors in demand forecasting 
due to insufficient real-time 
data on system-level building- 
grid interactions and market 
conditions.

[58,65,72,76]

​ Incomplete data on current and 
future system configurations, 
and interactions across energy 
carriers (electrical, gas, thermal 
networks).

[42,72–74]

​ Aggregation challenges of 
flexibility resources across 
buildings due to data quality 
and granularity discrepancies.

[65,74,75]

​ Delays in communication 
systems and inaccuracies in 
network-level data further 
amplifying prediction errors.

[31,65]
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modelling [29,30]. This is because using averaged building archetypes 
can obscure significant differences that influence the overall energy 
flexibility potential [38]. Temporal differences in single-building energy 
use caused by varying energy usage patterns also have a similar effect as 
diversity. This is because varying the time of peak load across a portfolio 
can create a more predictable and reliable aggregate demand response 
[34].

As illustrated by [86], population sizes of approximately 100 
households could be considered diverse enough to fully represent 
changes in peak heat demand. These findings were corroborated by 
other research, as can be seen in Fig. 5 which suggests the uncertainty in 
average peak demand dramatically decreases between sample sizes of ~ 
10 households up to 100 households. This scale is especially of relevance 
to aggregators, as they will typically operate at this range of building 
population. Not enough data were available for a non-domestic com-
parison, but it may be important to note the increase in demand and less 
variability that often ensues with non-domestic energy usage [87].

When tackling occupant behavioural challenges, it is noted that the 
benefits in reduction of stochasticity and aleatory uncertainty can only 
be achieved with larger scales. Working at an aggregate level can be 
achieved by utilising clustering approaches of populations, for example 
K-means clustering can be used to group occupant profiles based on 
similar energy usage patterns [88,89,90]. Clustering can allow for more 
generalised predictions of behaviour, making it easier to model energy 
use across large populations of buildings, but at the expense of increased 
epistemic uncertainty from heterogeneity (reduction in detail variation 
across the population). Additionally, managing a diverse portfolio of 
flexible buildings provides a form of redundancy – meaning that flexi-
bility in one part of the portfolio can compensate for limitations in 
another: reducing the impact of lower-than-expected flexibility at the 
single building level. To optimise aggregation while managing uncer-
tainty, the following strategies are recommended: 

• Increase diversity across the aggregated portfolio of buildings: 
By diversifying the system, occupant and household building typol-
ogies, it is possible to mitigate uncertainty in demand profiles at the 
aggregate level, which are due to uncertainties in dominant factors at 
the single-building level.

• Data-driven clustering of archetypes: Grouping buildings, energy 
systems or occupants with complementary profiles can enhance di-
versity while improving predictability in multi-building energy 
flexibility evaluation. By leveraging machine learning techniques, 
aggregators can tailor strategies to specific clusters, optimising 
flexibility outcomes.

• Infrastructure standardisation: Developing interoperable systems 
and communication protocols, such as using open standards [91,92], 
across buildings and systems can help enable seamless aggregation 
and reduces variability stemming from inconsistent performance or 
data exchange across a single building or a portfolio.

Fig. 4. A physical representation of the interrelationships between a four layered feedback loop, considering the dominant factors of energy flexibility and the 
propagation of uncertainty between the layers.

Fig. 5. Variation in average peak load during a flexibility event (dimensionless 
unit) with increasing number of households (shaded area corresponds to the 
estimated confidence interval).
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• Incorporation and feedback of real-time data: Aggregating real- 
time (15 min or shorter) data from buildings enables dynamic ad-
justments that optimise the diverse responses of individual compo-
nents, improving overall reliability for both single- and multi- 
building scales.

The qualitative assessment of dominant factors and uncertainty 
makes it difficult to assess the quantifiable impact of different factors on 
energy flexibility. However, the dominance of factors and impact of 
uncertainty differs across the scale and resolution of the cluster. 
Therefore, it is important that metrics are chosen for a given goal (i.e., 
reduce demand or improve renewable energy utilisation) and un-
certainties from different sources can be targeted more effectively for 
different populations of buildings [93,94]. The impact of these trade-offs 
between scale, level-of-detail and uncertainty is suggested as an area of 
further research.

4.3. Framework for identifying and mitigating energy flexibility 
uncertainties

This section describes the proposed framework in which un-
certainties arising from the dominant factors (and other variables) of 
energy flexibility can be identified and mitigated. Uncertainty remains a 
critical barrier to effective exploitation of energy flexibility in buildings, 
therefore a framework which centers around the categorisation of the 
uncertainty classes as defined in Section 1.2 is proposed. This framework 
aims to assist stakeholders in systematically identifying sources of un-
certainty and applying appropriate mitigation strategies to improve the 
exploitation of energy flexibility resources.

4.3.1. Step 1: Uncertainty classification
Firstly, one must determine the source of the uncertainty and 

determine whether it is Aleatory or epistemic based on the definitions 
introduced in Section 1.2: 

• Aleatory uncertainty which stems from inherent variability and 
randomness in a system or process.

• Epistemic uncertainty arises from a lack of knowledge or under-
standing about a system or process.

4.3.2. Step 2: Mapping uncertainty to dominant factors
Under the definition of dominant factors of energy flexibility, Table 7

can be used to link together the dominant factor classification, the type 
of uncertainty, several sources of uncertainty and potential mitigation 
strategies.

4.3.3. Step 3: Tiered mitigation strategies
Once the uncertainty sources and relevant dominant factors have 

been identified, it is possible to apply a tiered mitigation strategy which 
combines multiple approaches to manage and reduce the uncertainties.

4.3.3.1. Reduction of epistemic uncertainty via improved data collection 
and use. This involves, for example, making greater use of sensors for 
real time (<15 min) data acquisition; developing more detailed building 
stock datasets (such as a building passport which helps track changes to 
a building over time [95,96]); and better utilisation of data to calibrate 
models and quantify more realistic energy flexibility potentials.

4.3.3.2. Management of aleatory uncertainty through improving adaptive 
capability. By utilising probabilistic controls and stochastic program-
ming, aleatory uncertainty can be managed more straightforwardly. 
Similarly, using worst-case scenario planning can help mitigate the ef-
fects of stochastic changes as this provides a buffer for scheduling or 
dispatch strategies.

4.3.3.3. Increase resilience of aggregated energy flexibility via aggregation.
Portfolios of buildings can have diverse buildings, energy system and 
occupant types across them. By increasing the size of these clusters’ 
heterogeneity can become a strength in balancing outliers or under-
performance across the portfolio. Additionally, clustering can be used to 
help manage diversity and improve the tradeoffs between aleatory and 
epistemic sources of uncertainty.

4.3.4. Step 4: Mitigation strategy Alignment with stakeholders
At this stage, the mitigation actions can be linked to the relevant 

stakeholder groups, such as those defined in Section 1.3 – as per Table 6
below.

4.3.5. Practical use of the framework
To support the broader use of this framework a practical, hypo-

thetical, application is outlined below:
Context: An aggregator is planning to deploy a flexibility program 

across 500 dwellings using smart thermostats and electric heat pumps.
Step 1 – Classify Uncertainty sources:
Aleatory: Variability in occupant comfort preferences and weather 

conditions; Epistemic: Limited data on household thermal inertia, ac-
curate thermal performance and participation behaviour.

Step 2 – Map to Dominant Factors:
Occupant behaviour: Randomness in usage patterns (aleatory); 

Building characteristics: Thermal performance unknowns (epistemic); 
Energy systems & controls: HVAC performance heterogeneity (both); 
Externalities: Correct design of BGI signals and efficient data and 
communication systems.

Step 3 – Apply Mitigation Strategies:
Data-driven reduction: Use of pre-install surveys and in-situ sensors 

to gather thermal performance data; Adaptive monitoring: Implement 
robust MPC accounting for weather and load forecast uncertainty; Ag-
gregation: Use of clustering to group buildings by usage patterns and 
flexibility potential and manage population diversity.

Step 4 – Align with Stakeholders:
Occupants: In-home displays and time-based rewards to improve 

engagement – such as Octopus Energy’s “saving sessions” which are run 
when wholesale energy costs are high [97]; Aggregators: Predictive 
analytics dashboards for real-time load shifting; Operators: Bidding to 
markets with flexible capacity as firm vs non-firm availability, reducing 
critical bottlenecks such as market access and inconsistent regulatory 
frameworks [98].

4.4. Further work & limitations

This review has provided a qualitative assessment of the most 
dominant factors and uncertainties which impact energy flexibility. 
Further research should focus on quantifying the impacts of these un-
certainties through comparative studies – such as sensitivity analysis – 
where the ensuing impacts could be compared quantitatively to each 

Table 6 
A table illustrating how stakeholders can be aligned to the framework by 
matching their concerns with mitigation strategies to reduce or manage 
uncertainty.

Stakeholder 
Group

Primary Concern Targeted Actions from Framework

Occupants Participation and 
comfort

Awareness tools, automation, 
financial support

Aggregators Prediction and 
portfolio control

Clustering, robust forecasting, 
feedback systems

System 
Operators

Grid stability and 
balancing

Multi-scale predictive planning, firm 
capacity commitment

Decision 
Makers

Policy and market 
design and support

Incentive structures, data/ 
communication interoperability 
standards
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other using a variety of flexibility metrics.
A limitation of the SSSS review process was the ensuing negative bias 

against more recently published articles (i.e., key papers in 2024/25 
may not have received five citations yet) – this was somewhat mitigated 
by a secondary search focussed on more recent literature. Additionally, 
limiting the number of articles selected from each keyword search to 10 
meant that some keyword combinations were not as representative of 
the research pool than others. This was somewhat mitigated by papers 
being ranked by citation number but still does not expose the breadth or 
depth of the topic fields.

5. Conclusions

Energy flexibility in the built environment will play a critical role in 
facilitating sustainable energy systems and achieving net-zero goals. 
This systematic literature review explores the dominant factors influ-
encing energy flexibility and identifies the sources of uncertainty in its 
exploitation, contextualising established research to shape further 
research, business, and policy directions.

The study categorises uncertainties into aleatory (randomness and 
inherent variability) and epistemic (knowledge gaps and simplifica-
tions) sources. Both types of uncertainty hinder the widespread devel-
opment and uptake of building energy flexibility, either in the 
evaluation of flexibility potential or in the operation of a portfolio. The 
study identifies the sources and propagation of uncertainty across 
different dominant factors comprising occupant behaviour, building 
characteristics, building energy systems and controls, and externalities. 
Aleatory uncertainty ensues from the stochasticity of weather, energy 
markets, and human behaviour, and can be managed through probabi-
listic methods and adaptive controls. Conversely, epistemic un-
certainties, arising from incomplete data or understanding of building 
characteristics and system interactions, require targeted data collection 
and advanced modelling to enhance prediction accuracy.

This review highlights how uncertainty sources vary by scale; in the 
aggregate, aleatory uncertainty (e.g., weather or occupant behaviours) 
can be mitigated by balancing variability and improving resilience 
through diversity. This can, however, introduce epistemic uncertainty 
from reduced data or oversimplified aggregate models, such as arche-
types masking differences which necessitates refined clustering strate-
gies. The study also mentions uncertainty propagation between 
interconnected systems. Energy management controls can propagate 
errors from inputs requiring stochastic optimisation and data input for 
robust operation. Externalities like market dynamics, poorly designed 
policies, and inconsistent data standards further complicate scalability 
and reliability. Several hypotheses were developed which could be the 
focus of future research from this literature review: 

1. The importance of different dominant factors depends on the scale 
and level of aggregation; occupant behaviour and system dynamics 
at the single building level, whilst building characteristics and ex-
ternalities dominate at larger scales due to the challenges of data 
collection.

2. The impacts of aleatory uncertainty sources are significantly reduced 
through aggregation, whereas epistemic uncertainty sources become 
dominant at larger scales.

3. Quick data collection for occupancy will be more important for 
aggregators, whilst firmer contracted flexibility and weather pre-
diction will be more important for system operators.

This paper contributes to the existing field of knowledge by identi-
fying and categorising the dominant factors of building energy flexibility 
as identified by state-of-the-art in academic literature. The present 
research extends beyond the current state-of-the-art by focusing on 
uncertainty mitigation and the potential of aggregation effects, but 
suggests that future research focus on addressing the quantifiable as-
pects of “how dominant are the dominant factors of energy flexibility?” 

Table 7 
A Summary table mapping how different dominant factors of energy flexibility 
produce uncertainties of different categories and suggested mitigation strategies 
for them.

Dominant 
Factor

Uncertainty 
Type

Uncertainty 
Source

Mitigation Strategy 
Example

Occupant 
Behaviour

Aleatory Stochastic 
occupant 
behaviours

Aggregation to improve 
firmness of demand (or 
supply) via diversity of 
sources
“Smart” controls which 
can learn and track 
changes in behaviours 
over time

Epistemic Limited or 
inaccurate 
behavioural data

Clustering to improve 
accuracy of predictions 
for those with similar 
usage patterns or 
responses

Building 
Characteristics

Epistemic Inaccurate 
building 
characteristics

Archetype refinement 
can help minimise 
heterogeneity from 
broad clustering 
techniques

Unknown 
building 
characteristics

Improve baseline 
understanding of 
characteristics using 
retrofit databases or 
other data collection 
techniques

Energy Systems 
& Associated 
Controls

Epistemic/ 
Aleatory

Control logic Robust MPC can 
improve the 
management of 
aleatory uncertainties 
over a given time 
horizon

Appliance 
availability

Improved sensing and 
communication 
protocols can enable 
better understanding of 
system status and 
availability to provide 
energy flexibility

Aleatory Renewable 
output

Improved 
understanding of the 
generating capacity for 
buildings’ self- 
generation assets

Epistemic Model errors Using data-driven 
approaches such as 
digital twins or models 
based on real data can 
improve the prediction 
of energy flexibility

Externalities Aleatory/ 
Epistemic

BGI signal 
volatility (price, 
grid, emissions 
etc.)

Designing robust 
controls and clear BGI 
signals can help 
improve the 
predictability or 
response for real 
systems for energy 
flexibility provision

Aleatory Weather 
conditions

Improved estimation 
and tracking of weather 
systems can help 
improve predictions 
over hours to days.

Epistemic Policy shifts or 
regulatory 
uncertainty

Scenario planning can 
help with long-term 
strategy around the use 
of energy flexibility to 
improve business 
models
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Further, this work lays an improved foundation for scalable, resilient 
energy flexibility solutions.
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